4 novembre 2024

Fonctionnement d’une alimentation – Page 11

BDD Phase-Change
Compresseurs
Condenseurs
Evaporateurs
Réfrigérants
Systèmes frigo


Catégories de dossiers
Aircooling
Alimentations
Boîtiers
Extreme-Cooling
Hardware
Phase-Change
Watercooling


Derniers dossiers
Nanofluides, l'efficacité à la hausseSwiftech Apogee GTTagan Dual Engine 500 W8800GTX SLI & QX6700 Extreme O/C


Fonctionnement d’une alimentation – Page 11/25Rédigé par David D. – 29/12/2005
Catégorie : Alimentations

« Page précédente 1 – Introduction2 – Pourquoi du découpage ?3 – Fonctionnement général4 – Approfondissements des composants5 – Topologies de fonctionnement6 – Topologie en demi-pont7 – Topologie en conduction directe8 – Point de vue global sur l’alimentation9 – Définition du rendement électrique10 – Améliorations possibles du rendement11 – Correction du facteur de puissance12 – Correction du facteur de puissance (suite)13 – Correction du facteur de puissance (suite)14 – Correction passive du facteur de puissance15 – Correction active du facteur de puissance16 – Répartition des besoins en puissance17 – Régulation des tensions18 – Régulation couplée 5/12 V19 – Régulation indépendante20 – Qualité des tensions21 – Rails multiples de 12 V22 – Comment séparer les lignes 12 V ?23 – Limitations et problèmes induits par la séparation24 – Influence de la température25 – Conclusions Page suivante »
Correction du facteur de puissance

Préambule à la compréhension

Avant d’aller plus loin dans les explications, il faut définir ce que sont les harmoniques car l’un des intérêts d’un PFC (Power Factor Correction) repose là dessus.

Vous n’êtes pas sans savoir que la tension et le courant qui circulent sur un réseau idéal sont alternatifs à une fréquence de 50 Hz. Leur allure est une sinusoïde parfaite de période 1/50 = 0.02 s = 20 ms. On dit que ces signaux (idéaux) sont issus d’une seule fréquence fondamentale, aussi appelée harmonique de rang 1, égale à 50 Hz. Aucune autre fréquence n’est présente dans le signal, il est pur.

Malheureusement, les signaux ne sont jamais des sinusoïdes parfaites en réalité. Ils vont alors contenir d’autres fréquences en plus du 50 Hz et c’est ce qu’on appelle les fréquences harmoniques. Elles sont des multiples entiers du 50 Hz ici. Par exemple, l’harmonique de rang 2 a une fréquence de 2*50=100 Hz, celle de rang 3 de 150 Hz et ainsi de suite… Les multiples non entiers sont aussi possibles dans le cas d’inter harmoniques (phénomènes aléatoires sur la puissance absorbée) mais on n’en parlera pas. A cause du redressement et de la charge symétrique (demi-alternances de courant égales et opposées), on n’aura à faire qu’à des harmoniques de rang impair (3, 5, 7…).

Un signal réel n’est jamais parfait et il est plus ou moins déformé car les appareils électriques engendrent des charges non linéaires (elles déforment le courant). Ce signal peut être décomposé en une somme de plusieurs signaux sinusoïdaux superposés ayant chacun leur fréquence (décomposition de Fourier). Le principe de base est illustré sur le schéma suivant :

N’importe quel signal périodique peut être décomposé de la sorte. Ces signaux de fréquence unique sont appelés les harmoniques, et plus globalement les courants harmoniques si l’on s’occupe du courant. Ce sont eux que l’on souhaite éviter à tout prix car ils ne participent pas à l’alimentation de la charge et engendrent pas mal d’inconvénients. Ils surchargent le réseau en faisant transiter des courants inutiles qui provoquent un échauffement accru des câbles d’alimentation (perte joules). Ils peuvent aussi faire vieillir plus vite les éléments branchés sur le réseau en engendrant des phénomènes de résonance et des échauffements (transformateurs, machines tournantes). Ca peut perturber les organes de sécurités tels que les fusibles car le courant appelé est plus grand que celui réellement nécessaire. La capacité du réseau diminue alors plus ou moins suivant l’ampleur des harmoniques générées.

Ci-dessous, voici l’exemple pris d’une alimentation qui ne dispose d’aucun PFC. On s’intéresse uniquement à l’allure du courant tiré du réseau :

Le courant est très déformé (on expliquera pourquoi ensuite) et, de ce fait, il contient beaucoup d’harmoniques. La décomposition spectrale de l’allure du courant permet de connaître l’amplitude des courants harmoniques par rapport au courant issu du fondamental (celui qui nous intéresse). C’est ce que le graphe de droite montre avec des harmoniques d’amplitude très élevées. Le fondamental (rang 1) est à 100 % puisque c’est la référence et l’on voit que l’harmonique de rang 3 (notée H3) représente 90 % du fondamental. C’est à dire que si le fondamental fait transiter un courant maximum de 2 A, la H3 fait 2*0.9 = 1.8 A. Vous superposez le tout et vous obtenez un courant de crête très élevé par rapport à ce qu’il faudrait si le courant était purement sinusoïdal.

Ci-dessous, c’est la même chose mais avec un PFC passif qui rectifie déjà bien l’allure du courant et lui permet de contenir moins d’harmoniques. Sa forme est beaucoup plus proche d’une sinusoïde et c’est beaucoup mieux pour le réseau, le niveau des harmoniques a déjà bien diminué (H3 à 35 %) :

Tout l’art d’un bon module PFC sera principalement d’éliminer ces déformations sur le courant absorbé pour éviter l’apparition de courants harmoniques néfastes au réseau. Il aura aussi pour rôle de mettre le courant et la tension bien en phase (qu’ils montent et descendent en même temps en passant par 0 en même temps). Autrement dit, un PFC fera en sorte que le réseau voit l’alimentation comme une résistance pure (le seul élément électrique qui ne déforme rien ni ne déphase le courant) et non pas comme une charge non linéaire.

Ce que la norme impose à ce niveau

Depuis 2001, les standards européens et japonais notamment (IEC1000-3-2) imposent que tous les nouveaux appareils consommant plus de 75 W doivent comporter une correction du facteur de puissance pour respecter l’environnement. Ces standards imposent des limites sur le niveau des courants harmoniques engendrés par un système électrique à son entrée, et plus particulièrement pour des appareils de classe D (
Pour satisfaire la norme, il suffit d’être sous les seuils autorisés pour chaque harmonique. Voici par exemple 3 alimentations de 250 W qui ont été comparées à ce niveau d’exigence :

Sans PFC, quasiment tous les courants harmoniques des rangs 3 à 23 dépassent le seuil, elle n’est pas conforme à la norme et ne pourra pas être vendue en Europe. Pour le PFC passif, l’harmonique 3 est juste sur le seuil demandé, mais ça la respecte quand même donc pas de souci. Pour le PFC actif, il n’y a aucun problème non plus car tout est très atténué. On remarque que même avec un PFC actif, le signal contient encore des harmoniques qui déforment le courant car la correction n’est pas parfaite. Cependant, le taux de distorsion est si faible que l’allure du courant est relativement proche de la perfection et le facteur de puissance sera proche de 1 (0.99).

Un PFC est donc utilisé comme un système de compensation dans des applications où la tension et le courant tirés du réseau sont déphasés et/ou déformés.

« Page précédente 1 – Introduction2 – Pourquoi du découpage ?3 – Fonctionnement général4 – Approfondissements des composants5 – Topologies de fonctionnement6 – Topologie en demi-pont7 – Topologie en conduction directe8 – Point de vue global sur l’alimentation9 – Définition du rendement électrique10 – Améliorations possibles du rendement11 – Correction du facteur de puissance12 – Correction du facteur de puissance (suite)13 – Correction du facteur de puissance (suite)14 – Correction passive du facteur de puissance15 – Correction active du facteur de puissance16 – Répartition des besoins en puissance17 – Régulation des tensions18 – Régulation couplée 5/12 V19 – Régulation indépendante20 – Qualité des tensions21 – Rails multiples de 12 V22 – Comment séparer les lignes 12 V ?23 – Limitations et problèmes induits par la séparation24 – Influence de la température25 – Conclusions Page suivante »

©2003-2019 Cooling-Masters.com. Tous droits réservés.