logo
 AccueilNewsDossiers & ReviewsBDDForumA propos

BDD Phase-Change
Compresseurs
Condenseurs
Evaporateurs
Réfrigérants
Systèmes frigo


Catégories de dossiers
Aircooling
Alimentations
Boîtiers
Extreme-Cooling
Hardware
Phase-Change
Watercooling

Derniers dossiers
Nanofluides, l'efficacité à la hausseSwiftech Apogee GTTagan Dual Engine 500 W8800GTX SLI & QX6700 Extreme O/C

Fonctionnement d'une alimentation - Page 4/25

Rédigé par David D. - 29/12/2005
Catégorie : Alimentations



« Page précédente
Page suivante »

Approfondissements des composants

Détaillons un peu le fonctionnement avec les composants principaux qui ont été annotés sur l'image précédente. On commence avec l'arrivée du 230 V dans l'alimentation :

Le premier élément de sécurité indispensable est un fusible F1 qui protégera le réseau d'une défaillance de l'alimentation, et pas l'inverse. Il sautera au cas où un court-circuit venait à se produire au découpage notamment. Dans ce cas là, le courant absorbé devient très élevé, le fusible fond alors pour ne pas surcharger le réseau et isoler l'alimentation afin d'éviter un éventuel incendie.

On continue dans la sécurité avec une varistance (MOV : Metal Oxide Varistor), noté S1, qui protège l'alimentation des surtensions brutales qu'il peut y avoir si jamais la foudre venait à s'abattre pas loin par exemple. En temps normal, cet élément a une très grande résistance électrique, le courant de fuite qui le traverse est donc négligeable et rien ne se passe. Par contre, lorsque la tension augmente brutalement au delà d'un certain seuil, sa résistance chute d'un seul coup et il "court-circuite" alors directement l'entrée. Comme il est capable d'absorber une grosse énergie durant la fraction de seconde que dure le phénomène, il évite que la haute tension n'endommage le reste du système. Ca ne remplace pas un vrai système parasurtenseur monté en amont de l'alimentation, mais c'est une sécurité supplémentaire qui peut s'avérer utile dans certains cas.

On trouve juste derrière elle plusieurs filtres pour empêcher les parasites hautes fréquences générés par l'étage de découpage (ou d'un PFC actif) de remonter vers le réseau pour le polluer. Sur le schéma, on a 2 filtres T1 et T2 avec les condensateurs associés C1, C2 et C3, mais il peut y en avoir 3 pour encore plus d'efficacité. La filtre T1 s'occupe des interférences dites en mode commun et T2 s'occupe de celles en mode différentiel. On ne s'étalera pas sur les différences qui sont liées au sens de parcours du courant dans certains fils et aux interactions interlignes. Le but est de bloquer les hautes fréquences grâce à des condensateurs et des ferrites d'antiparasitage qui font office de barrière. Ils produisent très peu de pertes pour le rendement final.

On peut ensuite redresser la tension alternative sinusoïdale avec un pont de diodes tout simple pour la rendre continue en mettant toutes les alternances du même côté. Son fonctionnement est amélioré quand il y a un PFC actif car le courant est bien sinusoïdal et évolue en douceur. Quand il n'y a pas de PFC, le courant arrive en pics et les diodes doivent encaisser cette brutalité. Ca dissipe quelques watts à pleine charge à cause de la chute de tension inévitable des diodes (~0.7 V). En sortie, on obtient du 325 V continu non lissé (230 Vrms = 325 V crête) pour alimenter le module PFC s'il y en a un, sinon directement l'étage de découpage en passant par un ou deux gros condensateurs suivant la manière choisie pour découper. Ces condensateurs serviront à lisser la tension et à stocker de l'énergie pour le découpage.

On passe sur les explications du PFC ainsi que sur la manière d'alimenter le transformateur, ça sera détaillé un peu plus tard. On s'occupe maintenant des circuits de sortie :

Les impulsions sortent des enroulements secondaires du transformateur pour aller à l'étage de redressement final. On utilise encore une fois des diodes pour faire ce travail (rappel : elles ne laissent passer le courant que dans un seul sens). Elles sont un peu différentes des diodes classiques car ce sont des diodes de puissance et très rapides, dites diodes Schottky. Ca signifie simplement que si la tension vient à s'inverser à ses bornes, ce qui est le cas avec les impulsions positives-négatives, elle se bloque beaucoup plus vite qu'une diode normale pour ne pas laisser passer le courant dans l'autre sens. C'est très important vu la vitesse de découpage.

En plus, elle engendre une chute de tension plus faible (~0.3 à 0.5 V) que les diodes normales (~0.7 V) et donc provoque moins de pertes inutiles lors du passage de forts courants. Pour des raisons de commodité, on les rassemble par 2 dans un même pack qu'on désigne par le terme "barrière Schottky". On en trouve plusieurs sur le radiateur près de la sortie pour les 3 tensions principales. On peut avoir 1 ou 2 barrières en parallèle par tension suivant leurs caractéristiques électriques et la puissance maximale du rail en question. Ces diodes sont l'une des sources majeures de perte de rendement dans l'alimentation, avec les transistors de découpage.

Voici à quoi ça ressemble avec le composant de gauche SBL2040CT et son schéma équivalent :

Le courant ne peut circuler que de A1 ou A2 vers K (dans le sens des flèches), l'autre sens est bloqué par les diodes. On met exprès cette photo pour montrer un bidouillage trouvé dans l'alimentation qui a lâché dont on parle en introduction. Par souci d'économie, l'une des barrières Schottky en pack a été remplacée par 2 diodes normales. Ca ne vaut pas grand-chose et ça risque de brûler bien vite car ça n'est pas fait pour supporter un gros courant longtemps (suivant les spécifications annoncées), surtout qu'elles ne sont pas directement fixées au radiateur pour être refroidies, hormis par leurs pattes.

On arrive à la fin du processus avec un signal redressé, mais toujours en créneau. Il faut maintenant le lisser et le filtrer pour obtenir une tension et un courant propres et stables. Cet étage de filtrage est l'un des plus importants, sinon le plus important à ne surtout pas négliger. De lui dépend la qualité des signaux envoyés à tous les périphériques. Ci-dessous, figure un étage de filtrage fin, situé juste après une barrière Schottky D3/D4, qu'on retrouve sur chaque tension principale d'une alimentation. On n'en représente qu'une seule par commodité :

Le point remarquable qui permette le bon fonctionnement d'un système à découpage repose sur les propriétés des inductances (notée "inductance de lissage" sur la photo de l'alimentation par ex.). Le courant qui traverse une inductance, qui est un fil entouré autour d'un noyau ferromagnétique, ne peut en aucun cas s'interrompre ou changer brutalement. Quand le courant varie rapidement, l'inductance s'oppose à sa variation en tentant de maintenir un niveau constant grâce à l'énergie qu'elle a emmagasiné sous forme magnétique dans son noyau lors du passage du courant. S'il diminue ou s'interrompt, l'inductance maintient le courant de sortie aussi longtemps que possible, elle agit alors comme un générateur.

Cette propriété très pratique est utilisée pendant le temps où le courant délivré par le transformateur est nul (entre chaque impulsion). Il ne faut évidemment pas interrompre l'apport d'énergie aux périphériques, ne serait-ce qu'une fraction de seconde ! Cette tâche revient à une grosse inductance L1 qui donne un courant de cette allure sous le régime d'impulsions :

Le temps Ton est le temps de conduction des transistors. Pendant Ton, le courant arrive directement de l'étage de découpage au travers du transformateur pour alimenter la charge. Dans le même temps, l'inductance se charge en énergie magnétique au passage du courant qui grimpe doucement. Le temps Toff est le temps où l'étage de sortie est complètement coupé du monde (transistors de découpage bloqués). Durant cette période, c'est l'inductance qui s'occupera alors de fournir le courant le temps qu'une nouvelle impulsion arrive et ainsi de suite. D'un point de vue extérieur, le courant équivalent est la moyenne de ce signal en dent de scie. Si l'on regarde les tensions à l'oscilloscope, on peut retrouver cette forme triangulaire à la fréquence du découpage (ou du double suivant la topologie) car le lissage n'est pas parfait. Cette inductance L1 jouera aussi un rôle dans les alimentations à régulation couplée...

Le courant est continu et lissé, on s'attaque maintenant au filtrage de la tension à l'aide des condensateurs C9 et C10 qui forment un filtre passe-bas avec une petite inductance L2. Ce filtre a pour rôle de bloquer et d'atténuer les parasites hautes fréquences issues du découpage. Un condensateur c'est l'inverse d'une inductance si l'on veut, lui ne tolère pas que la tension à ses bornes varie brutalement. Il fera tout pour la maintenir à un niveau constant en délivrant l'énergie emmagasinée pour compenser. Malgré les variations possibles en sortie, le condensateur lissera donc les imperfections pour donner une tension aussi plate que possible.

Il doit y avoir une capacité suffisante (exprimée en Farad) pour assurer la continuité lors des demandes brutales de puissance sur la ligne, le temps que l'alimentation réagisse et n'ordonne au découpage d'envoyer plus d'énergie. Si on ne met pas assez de condensateurs, la stabilité de l'alimentation en pâtira sérieusement car à la moindre sollicitation, la tension s'effondra trop pendant une fraction de seconde faute d'énergie disponible et cela peut suffire à faire planter la machine. L'ondulation résiduelle (ripple) sera plus importante faute de condensateurs et la tension sera beaucoup moins propre. C'est ce que vous aurez sur des alimentations bas de gamme où l'on n'hésite pas à réduire, voire à supprimer, des condensateurs et des petites inductances afin de faire des économies. Il en résulte bien évidemment une tension de sortie ignoble une fois sous charge. Ils doivent aussi être du type "Low ESR" (ou mieux "Ultra Low ESR"), c'est à dire à faible résistance série pour éviter les pertes inutiles (un condensateur ça chauffe un peu).

Souvenez-vous des problèmes de condensateurs de mauvaise qualité qui laissaient échapper leur liquide électrolytique sur certaines cartes mères et notamment à l'étage d'alimentation du processeur où ils sont beaucoup sollicités. La capacité totale était largement diminuée et le plantage survenait quand le processeur passait à pleine charge car son Vcore, qui doit être maintenu avec une tolérance très stricte, ne pouvait plus l'être et s'effondrait lors de l'appel du courant (vitesse de montée = plusieurs dizaines d'ampères par microseconde).

Voilà, on a finalement notre tension de sortie relativement propre pour alimenter ce que l'on veut. Le dernier point, et non des moindres, concerne l'aspect régulation pour maintenir les tensions à un niveau stable quelles que soient les charges sur les lignes. Ca sera l'objet d'une partie comparative entre les régulations classiques dites "couplées" ou "croisées" et les régulations indépendantes beaucoup plus performantes. Cette régulation se fera en agissant sur le temps de conduction des transistors de découpage. Plus on demandera de puissance en sortie, plus ils enverront d'énergie dans le transformateur, et inversement.

On n'oublie pas de parler du 5VSB (StandBy) qui possède son propre étage de découpage, son mini transformateur et son circuit de sortie dédié, tout en parallèle du reste. La puissance disponible est très faible et il reste tout le temps actif même lorsqu'on éteint la machine sans retirer la prise. Il permet d'assurer des fonctions de réveil en réseau, de démarrage au clavier, etc. On ne parle pas du -5 V qui est désormais obsolète depuis Janvier 2002. Il reste le -12 V qui peut être créé à partir de l'enroulement du 12 V en mettant 2 petites diodes à l'envers par exemple, ça suffit amplement vu le peu de puissance nécessaire.

« Page précédente
Page suivante »

©2003-2017 Cooling-Masters.com. Tous droits réservés.